Wrangling MLB Pitchf/x Data with Python

4.6 (32)
Онлайн-курс
Payment
Обучение платное
Language
Not set
Duration
2.5 часа курса
Курс от Udemy
Чему вы научились?
How to find MLB game and pitch data in Gameday.
How to create and program a Jupyter Notebook in Python.
How to extract XML pitch data from the MLB website.
How to coerce XML tree data into a Pandas Dataframe.
How to extract Dataframe slices into multiple views.
How to plot pitch data with Matplotlib and Pyplot graphs.
Adding data columns to a Pandas Dataframe.
Plotting pitch tendency as pie charts (by ball-strike count).
О курсе

In the 2006 playoffs, Major League Baseball debuted a pitch tracking camera system called PitchF/x. Now installed in every MLB stadium, the system has been continually extended and re-branded. From cameras to TrackMan radar, from StatCast, to GameDay – MLB now tracks every pitch and every player's movement on each pitch. The data are made public on the MLB web site and SaberMetricians world-wide pour over every detail. The teams themselves, average five or more statisticians dedicated to analyzing the data to aid in selecting and improving players.

I'm Chaz Henry – a software engineer, 12 year little league coach and founder of the PowerChalk dot com website. In this class, we're going to open a fresh Jupyter Notebook, grab the MLB game data from Clayton Kershaw's 2014 no-hitter and wrangle that data in Python. It's an introduction in SaberMetrics - the empirical study of baseball statistics.

We'll use built-in Python libraries and graph the pitches with MatPlotLib and PyPlot. Along the way we'll talk about best practices for Jupyter Notebook, Python coding, XML parsing and maybe a little baseball.

So, if you're a coder, a SaberMetrician or a just a baseball fan who wants to peek behind the curtain at what's driving MoneyBall and the next wave of player development, sign up for the course and let's start scrubbing the pitch data from one of the greatest pitching performances in MLB history.

Требования
  • Basic programming is helpful.
Лекторы
Chaz Henry
Chaz Henry
Machine Learning Software Engineer
Платформа
/storage/img/providers/udemy.svg
Курсы Udemy подойдут для профессионального развития. Платформа устроена таким образом, что эксперты сами запускают курсы. Все материалы передаются в пожизненный доступ. На этой платформе можно найти курс, без преувеличений, на любую тему – начиная от тьюториала по какой-то камере и заканчивая теоретическим курсом по управлению финансовыми рисками. Язык и формат обучения устанавливается преподавателем, поэтому стоит внимательно изучить информацию о курсе перед покупкой.
Рейтинг
4.6
(22)
(9)
(1)
(0)
(0)
Комментарии (32)
Как и любой другой веб-сайт, konevy использует файлы cookie. Эти файлы используются для хранения информации, включая предпочтения посетителей и страницы веб-сайта, которые он/она посещал. Информация используется для того, чтобы подстроить содержимое нашей страницы под тип браузера пользователя и другие параметры и таким образом улучшить его пользовательский опыт. Для получения более подробной информации о файлах cookie, пожалуйста, прочтите статью «Что такое файлы cookie»