Python for Data Science and Machine Learning Bootcamp

4.6 (86488)
Онлайн-курс
Payment
Обучение платное
Language
Английский
Duration
25 часов курса
Курс от Udemy
Чему вы научились?
Use Python for Data Science and Machine Learning
Use Spark for Big Data Analysis
Implement Machine Learning Algorithms
Learn to use NumPy for Numerical Data
Learn to use Pandas for Data Analysis
Learn to use Matplotlib for Python Plotting
Learn to use Seaborn for statistical plots
Use Plotly for interactive dynamic visualizations
Use SciKit-Learn for Machine Learning Tasks
K-Means Clustering
Logistic Regression
Linear Regression
Random Forest and Decision Trees
Natural Language Processing and Spam Filters
Neural Networks
Support Vector Machines
О курсе

Are you ready to start your path to becoming a Data Scientist! 

This comprehensive course will be your guide to learning how to use the power of Python to analyze data, create beautiful visualizations, and use powerful machine learning algorithms!

Data Scientist has been ranked the number one job on Glassdoor and the average salary of a data scientist is over $120,000 in the United States according to Indeed! Data Science is a rewarding career that allows you to solve some of the world's most interesting problems!

This course is designed for both beginners with some programming experience or experienced developers looking to make the jump to Data Science!

This comprehensive course is comparable to other Data Science bootcamps that usually cost thousands of dollars, but now you can learn all that information at a fraction of the cost! With over 100 HD video lectures and detailed code notebooks for every lecture this is one of the most comprehensive course for data science and machine learning on Udemy!

We'll teach you how to program with Python, how to create amazing data visualizations, and how to use Machine Learning with Python! Here a just a few of the topics we will be learning:

  • Programming with Python
  • NumPy with Python
  • Using pandas Data Frames to solve complex tasks
  • Use pandas to handle Excel Files
  • Web scraping with python
  • Connect Python to SQL
  • Use matplotlib and seaborn for data visualizations
  • Use plotly for interactive visualizations
  • Machine Learning with SciKit Learn, including:
  • Linear Regression
  • K Nearest Neighbors
  • K Means Clustering
  • Decision Trees
  • Random Forests
  • Natural Language Processing
  • Neural Nets and Deep Learning
  • Support Vector Machines
  • and much, much more!

Enroll in the course and become a data scientist today!

Программа
Course Introduction
Welcome to the Course!
Introduction to the Course
Course Help and Welcome
Just a quick thank you and how to get help in the course!
Course FAQs
Check out FAQs for the course!
Environment Set-Up
Get your Environment Set-up!
Python Environment Setup
Learn how to install Python and Anaconda and get your system setup.
Jupyter Overview
Learn about the Jupyter Notebook Environment
Updates to Notebook Zip
Jupyter Notebooks
Learn about the Jupyter Notebook System!
Optional: Virtual Environments
Optional Lecture on Virtual Environments
Python Crash Course
Learn Python quickly and easily!
Welcome to the Python Crash Course Section!
Just a quick introduction of the section from me personally!
Требования
  • Some programming experience
  • Admin permissions to download files
Лекторы
Jose Portilla
Jose Portilla
Head of Data Science, Pierian Data Inc.
Платформа
/storage/img/providers/udemy.svg
Курсы Udemy подойдут для профессионального развития. Платформа устроена таким образом, что эксперты сами запускают курсы. Все материалы передаются в пожизненный доступ. На этой платформе можно найти курс, без преувеличений, на любую тему – начиная от тьюториала по какой-то камере и заканчивая теоретическим курсом по управлению финансовыми рисками. Язык и формат обучения устанавливается преподавателем, поэтому стоит внимательно изучить информацию о курсе перед покупкой.
Рейтинг
4.6
(48203)
(32271)
(6223)
(727)
(352)
Комментарии (86488)
Как и любой другой веб-сайт, konevy использует файлы cookie. Эти файлы используются для хранения информации, включая предпочтения посетителей и страницы веб-сайта, которые он/она посещал. Информация используется для того, чтобы подстроить содержимое нашей страницы под тип браузера пользователя и другие параметры и таким образом улучшить его пользовательский опыт. Для получения более подробной информации о файлах cookie, пожалуйста, прочтите статью «Что такое файлы cookie»