Deep Learning Prerequisites: Logistic Regression in Python

4.5 (3019)
Онлайн-курс
Payment
Обучение платное
Language
Английский
Duration
6 часов курса
Курс от Udemy
Чему вы научились?
program logistic regression from scratch in Python
describe how logistic regression is useful in data science
derive the error and update rule for logistic regression
understand how logistic regression works as an analogy for the biological neuron
use logistic regression to solve real-world business problems like predicting user actions from e-commerce data and facial expression recognition
understand why regularization is used in machine learning
О курсе

This course is a lead-in to deep learning and neural networks - it covers a popular and fundamental technique used in machine learning, data science and statistics: logistic regression. We cover the theory from the ground up: derivation of the solution, and applications to real-world problems. We show you how one might code their own logistic regression module in Python.

This course does not require any external materials. Everything needed (Python, and some Python libraries) can be obtained for free.

This course provides you with many practical examples so that you can really see how deep learning can be used on anything. Throughout the course, we'll do a course project, which will show you how to predict user actions on a website given user data like whether or not that user is on a mobile device, the number of products they viewed, how long they stayed on your site, whether or not they are a returning visitor, and what time of day they visited.

Another project at the end of the course shows you how you can use deep learning for facial expression recognition. Imagine being able to predict someone's emotions just based on a picture!

If you are a programmer and you want to enhance your coding abilities by learning about data science, then this course is for you. If you have a technical or mathematical background, and you want use your skills to make data-driven decisions and optimize your business using scientific principles, then this course is for you.

This course focuses on "how to build and understand", not just "how to use". Anyone can learn to use an API in 15 minutes after reading some documentation. It's not about "remembering facts", it's about "seeing for yourself" via experimentation. It will teach you how to visualize what's happening in the model internally. If you want more than just a superficial look at machine learning models, this course is for you.

Suggested Prerequisites:

  • calculus (taking derivatives)
  • matrix arithmetic
  • probability
  • Python coding: if/else, loops, lists, dicts, sets
  • Numpy coding: matrix and vector operations, loading a CSV file

TIPS (for getting through the course):

  • Watch it at 2x.
  • Take handwritten notes. This will drastically increase your ability to retain the information.
  • Write down the equations. If you don't, I guarantee it will just look like gibberish.
  • Ask lots of questions on the discussion board. The more the better!
  • Realize that most exercises will take you days or weeks to complete.
  • Write code yourself, don't just sit there and look at my code.

WHAT ORDER SHOULD I TAKE YOUR COURSES IN?:

  • Check out the lecture "What order should I take your courses in?" (available in the Appendix of any of my courses, including the free Numpy course)

Программа
Start Here
Introduction and Outline

This lecture will outline what will be learned in the course. I explain the importance of knowing the math, and provide short descriptions of each section later covered. Feel free to skip it and jump right into the 3rd video.

How to Succeed in this Course
Review of the classification problem

Difference between supervised and unsupervised learning. Difference between classification and regression. Feel free to skip this one if you already know this.

Introduction to the E-Commerce Course Project
Easy first quiz
An easy first quiz
Basics: What is linear classification? What's the relation to neural networks?
Describe how a linear classifier works and understand the biological inspiration behind neural networks and logistic regression.
Linear Classification
I discuss what linear classification is from a general standpoint, without invoking any specifics related to logistic regression. I provide a 2-dimensional binary classification example and go over how we would classify data into 1 of 3 cases: positive class, negative class, and don't know / not sure.
Biological inspiration - the neuron
In this lecture I discuss a brief history of neural networks, and talk about how the characteristics of the neuron (action potential, signal propagation, inhibitory and excitatory behavior) are modeled in different ways: the Hodgkin Huxley mdoel, the FitzHugh Nagumo model, and the logistic model.
How do we calculate the output of a neuron / logistic classifier? - Theory
I show the feedforward calculation for the output of a logistic unit.
How do we calculate the output of a neuron / logistic classifier? - Code
I show how to code the feedforward calculation for the output of a logistic unit in Python and numpy.
Interpretation of Logistic Regression Output
Требования
  • Derivatives, matrix arithmetic, probability
  • You should know some basic Python coding with the Numpy Stack
Лекторы
Lazy Programmer Inc.
Lazy Programmer Inc.
Artificial intelligence and machine learning engineer
Платформа
/storage/img/providers/udemy.svg
Курсы Udemy подойдут для профессионального развития. Платформа устроена таким образом, что эксперты сами запускают курсы. Все материалы передаются в пожизненный доступ. На этой платформе можно найти курс, без преувеличений, на любую тему – начиная от тьюториала по какой-то камере и заканчивая теоретическим курсом по управлению финансовыми рисками. Язык и формат обучения устанавливается преподавателем, поэтому стоит внимательно изучить информацию о курсе перед покупкой.
Рейтинг
4.5
(1913)
(887)
(183)
(29)
(38)
Комментарии (3019)
Как и любой другой веб-сайт, konevy использует файлы cookie. Эти файлы используются для хранения информации, включая предпочтения посетителей и страницы веб-сайта, которые он/она посещал. Информация используется для того, чтобы подстроить содержимое нашей страницы под тип браузера пользователя и другие параметры и таким образом улучшить его пользовательский опыт. Для получения более подробной информации о файлах cookie, пожалуйста, прочтите статью «Что такое файлы cookie»