Data Science: Natural Language Processing (NLP) in Python

4.5
8 814 комментариев
Payment
Обучение платное
Certificate
Сертификация бесплатная
Duration
10 часов курса
О курсе

In this course you will build MULTIPLE practical systems using natural language processing, or NLP - the branch of machine learning and data science that deals with text and speech. This course is not part of my deep learning series, so it doesn't contain any hard math - just straight up coding in Python. All the materials for this course are FREE.

After a brief discussion about what NLP is and what it can do, we will begin building very useful stuff. The first thing we'll build is a cipher decryption algorithm. These have applications in warfare and espionage. We will learn how to build and apply several useful NLP tools in this section, namely, character-level language models (using the Markov principle), and genetic algorithms.

The second project, where we begin to use more traditional "machine learning", is to build a spam detector. You likely get very little spam these days, compared to say, the early 2000s, because of systems like these.

Next we'll build a model for sentiment analysis in Python. This is something that allows us to assign a score to a block of text that tells us how positive or negative it is. People have used sentiment analysis on Twitter to predict the stock market.

We'll go over some practical tools and techniques like the NLTK (natural language toolkit) library and latent semantic analysis or LSA.

Finally, we end the course by building an article spinner. This is a very hard problem and even the most popular products out there these days don't get it right. These lectures are designed to just get you started and to give you ideas for how you might improve on them yourself. Once mastered, you can use it as an SEO, or search engine optimization tool. Internet marketers everywhere will love you if you can do this for them!

This course focuses on "how to build and understand", not just "how to use". Anyone can learn to use an API in 15 minutes after reading some documentation. It's not about "remembering facts", it's about "seeing for yourself" via experimentation. It will teach you how to visualize what's happening in the model internally. If you want more than just a superficial look at machine learning models, this course is for you.

Suggested Prerequisites:

  • Python coding: if/else, loops, lists, dicts, sets
  • Take my free Numpy prerequisites course (it's FREE, no excuses!) to learn about Numpy, Matplotlib, Pandas, and Scikit-Learn, as well as Machine Learning basics
  • Optional: If you want to understand the math parts, linear algebra and probability are helpful

TIPS (for getting through the course):

  • Watch it at 2x.
  • Take handwritten notes. This will drastically increase your ability to retain the information.
  • Ask lots of questions on the discussion board. The more the better!
  • Realize that most exercises will take you days or weeks to complete.
  • Write code yourself, don't just sit there and look at my code.

WHAT ORDER SHOULD I TAKE YOUR COURSES IN?:

  • Check out the lecture "What order should I take your courses in?" (available in the Appendix of any of my courses, including the free Numpy course)

Программа
Natural Language Processing - What is it used for?
Know about NLP applications and some tasks it performs.
Introduction and Outline
NLP Applications
NLP is very practical, so it's worth listing out what it is used for. Here we give brief overviews of things like spam detection, POS tagging, NER, sentiment analysis, machine translation, summarization, the Turing test, and more.
Why is NLP hard?
In this lecture some examples of ambiguity of language are given, to make it clear why NLP is not a straightforward problem.
The Central Message of this Course
Course Preparation
How to Succeed in this Course
Where to get the code and data
Do you need a review of machine learning?
Build your own spam detector
Build your own spam detector
Build your own spam detector - description of data
Build your own spam detector using Naive Bayes and AdaBoost - the code
Требования
  • Install Python, it's free!
  • You should be at least somewhat comfortable writing Python code
  • Know how to install numerical libraries for Python such as Numpy, Scipy, Scikit-learn, Matplotlib, and BeautifulSoup
  • Take my free Numpy prerequisites course (it's FREE, no excuses!) to learn about Numpy, Matplotlib, Pandas, and Scikit-Learn, as well as Machine Learning basics
  • Optional: If you want to understand the math parts, linear algebra and probability are helpful
Что Вы изучите?
  • Write your own cipher decryption algorithm using genetic algorithms and language modeling with Markov models
  • Write your own spam detection code in Python
  • Write your own sentiment analysis code in Python
  • Perform latent semantic analysis or latent semantic indexing in Python
  • Have an idea of how to write your own article spinner in Python
Лекторы
Lazy Programmer Inc.
Lazy Programmer Inc.
Artificial intelligence and machine learning engineer

Today, I spend most of my time as an artificial intelligence and machine learning engineer with a focus on deep learning, although I have also been known as a data scientist, big data engineer, and full stack software engineer.

I received my masters degree in computer engineering with a specialization in machine learning and pattern recognition.

Experience includes online advertising and digital media as both a data scientist (optimizing click and conversion rates) and big data engineer (building data processing pipelines). Some big data technologies I frequently use are Hadoop, Pig, Hive, MapReduce, and Spark.

I've created deep learning models to predict click-through rate and user behavior, as well as for image and signal processing and modeling text.

My work in recommendation systems has applied Reinforcement Learning and Collaborative Filtering, and we validated the results using A/B testing.

I have taught undergraduate and graduate students in data science, statistics, machine learning, algorithms, calculus, computer graphics, and physics for students attending universities such as Columbia University, NYU, Hunter College, and The New School. 

Multiple businesses have benefitted from my web programming expertise. I do all the backend (server), frontend (HTML/JS/CSS), and operations/deployment work. Some of the technologies I've used are: Python, Ruby/Rails, PHP, Bootstrap, jQuery (Javascript), Backbone, and Angular. For storage/databases I've used MySQL, Postgres, Redis, MongoDB, and more.

Платформа
Udemy
Курсы Udemy подойдут для профессионального развития. Платформа устроена таким образом, что эксперты сами запускают курсы. Все материалы передаются в пожизненный доступ. На этой платформе можно найти курс, без преувеличений, на любую тему – начиная от тьюториала по какой-то камере и заканчивая теоретическим курсом по управлению финансовыми рисками. Язык и формат обучения устанавливается преподавателем, поэтому стоит внимательно изучить информацию о курсе перед покупкой.
77.99 $ 119.99 $
Рейтинг
4.5
5 116
2 860
595
162
102