Complete Guide to TensorFlow for Deep Learning with Python

4.4 (15045)
Обучение платное
14 часов курса
Курс от Udemy
Чему вы научились?
Understand how Neural Networks Work
Build your own Neural Network from Scratch with Python
Use TensorFlow for Classification and Regression Tasks
Use TensorFlow for Image Classification with Convolutional Neural Networks
Use TensorFlow for Time Series Analysis with Recurrent Neural Networks
Use TensorFlow for solving Unsupervised Learning Problems with AutoEncoders
Learn how to conduct Reinforcement Learning with OpenAI Gym
Create Generative Adversarial Networks with TensorFlow
Become a Deep Learning Guru!
О курсе

Welcome to the Complete Guide to TensorFlow for Deep Learning with Python!

This course will guide you through how to use Google's TensorFlow framework to create artificial neural networks for deep learning! This course aims to give you an easy to understand guide to the complexities of Google's TensorFlow framework in a way that is easy to understand. Other courses and tutorials have tended to stay away from pure tensorflow and instead use abstractions that give the user less control. Here we present a course that finally serves as a complete guide to using the TensorFlow framework as intended, while showing you the latest techniques available in deep learning!

This course is designed to balance theory and practical implementation, with complete jupyter notebook guides of code and easy to reference slides and notes. We also have plenty of exercises to test your new skills along the way!

This course covers a variety of topics, including

  • Neural Network Basics
  • TensorFlow Basics
  • Artificial Neural Networks
  • Densely Connected Networks
  • Convolutional Neural Networks
  • Recurrent Neural Networks
  • AutoEncoders
  • Reinforcement Learning
  • OpenAI Gym
  • and much more!

There are many Deep Learning Frameworks out there, so why use TensorFlow?

TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API. TensorFlow was originally developed by researchers and engineers working on the Google Brain Team within Google's Machine Intelligence research organization for the purposes of conducting machine learning and deep neural networks research, but the system is general enough to be applicable in a wide variety of other domains as well.

It is used by major companies all over the world, including Airbnb, Ebay, Dropbox, Snapchat, Twitter, Uber, SAP, Qualcomm, IBM, Intel, and of course, Google!

Become a machine learning guru today! We'll see you inside the course!

Course Overview PLEASE DON'T SKIP THIS LECTURE! Thanks :)
FAQ - Frequently Asked Questions
Installation and Setup
Let's get your computer set-up!
Quick Note for MacOS and Linux Users
Installing TensorFlow and Environment Setup
Learn how to install Tensorflow on your computer and setup using our environment file.
What is Machine Learning?
Get an overview of Artificial Neural Networks and Deep Learning
Machine Learning Overview
Crash Course Overview
Let's briefly get a refresher of the libraries used in this course!
Crash Course Section Introduction
NumPy Crash Course
  • Some knowledge of programming (preferably Python)
  • Some basic knowledge of math (mean, standard deviation, etc..)
Jose Portilla
Jose Portilla
Head of Data Science, Pierian Data Inc.
Курсы Udemy подойдут для профессионального развития. Платформа устроена таким образом, что эксперты сами запускают курсы. Все материалы передаются в пожизненный доступ. На этой платформе можно найти курс, без преувеличений, на любую тему – начиная от тьюториала по какой-то камере и заканчивая теоретическим курсом по управлению финансовыми рисками. Язык и формат обучения устанавливается преподавателем, поэтому стоит внимательно изучить информацию о курсе перед покупкой.
Комментарии (15045)
Как и любой другой веб-сайт, konevy использует файлы cookie. Эти файлы используются для хранения информации, включая предпочтения посетителей и страницы веб-сайта, которые он/она посещал. Информация используется для того, чтобы подстроить содержимое нашей страницы под тип браузера пользователя и другие параметры и таким образом улучшить его пользовательский опыт. Для получения более подробной информации о файлах cookie, пожалуйста, прочтите статью «Что такое файлы cookie»