Cluster Analysis and Unsupervised Machine Learning in Python

3 849 комментариев
Обучение платное
Сертификация бесплатная
6.5 часов курса
О курсе

Cluster analysis is a staple of unsupervised machine learning and data science.

It is very useful for data mining and big data because it automatically finds patterns in the data, without the need for labels, unlike supervised machine learning.

In a real-world environment, you can imagine that a robot or an artificial intelligence won’t always have access to the optimal answer, or maybe there isn’t an optimal correct answer. You’d want that robot to be able to explore the world on its own, and learn things just by looking for patterns.

Do you ever wonder how we get the data that we use in our supervised machine learning algorithms?

We always seem to have a nice CSV or a table, complete with Xs and corresponding Ys.

If you haven’t been involved in acquiring data yourself, you might not have thought about this, but someone has to make this data!

Those “Y”s have to come from somewhere, and a lot of the time that involves manual labor.

Sometimes, you don’t have access to this kind of information or it is infeasible or costly to acquire.

But you still want to have some idea of the structure of the data. If you're doing data analytics automating pattern recognition in your data would be invaluable.

This is where unsupervised machine learning comes into play.

In this course we are first going to talk about clustering. This is where instead of training on labels, we try to create our own labels! We’ll do this by grouping together data that looks alike.

There are 2 methods of clustering we’ll talk about: k-means clustering and hierarchical clustering.

Next, because in machine learning we like to talk about probability distributions, we’ll go into Gaussian mixture models and kernel density estimation, where we talk about how to "learn" the probability distribution of a set of data.

One interesting fact is that under certain conditions, Gaussian mixture models and k-means clustering are exactly the same! We’ll prove how this is the case.

All the algorithms we’ll talk about in this course are staples in machine learning and data science, so if you want to know how to automatically find patterns in your data with data mining and pattern extraction, without needing someone to put in manual work to label that data, then this course is for you.

All the materials for this course are FREE. You can download and install Python, Numpy, and Scipy with simple commands on Windows, Linux, or Mac.

This course focuses on "how to build and understand", not just "how to use". Anyone can learn to use an API in 15 minutes after reading some documentation. It's not about "remembering facts", it's about "seeing for yourself" via experimentation. It will teach you how to visualize what's happening in the model internally. If you want more than just a superficial look at machine learning models, this course is for you.

Suggested Prerequisites:

  • matrix addition, multiplication
  • probability
  • Python coding: if/else, loops, lists, dicts, sets
  • Numpy coding: matrix and vector operations, loading a CSV file

TIPS (for getting through the course):

  • Watch it at 2x.
  • Take handwritten notes. This will drastically increase your ability to retain the information.
  • Write down the equations. If you don't, I guarantee it will just look like gibberish.
  • Ask lots of questions on the discussion board. The more the better!
  • Realize that most exercises will take you days or weeks to complete.
  • Write code yourself, don't just sit there and look at my code.


  • Check out the lecture "What order should I take your courses in?" (available in the Appendix of any of my courses, including the free Numpy course)

Introduction to Unsupervised Learning
Understand the uses of unsupervised learning, clustering, and kernel density estimation
Introduction and Outline
What is unsupervised learning used for?
Why Use Clustering?
How to Succeed in this Course
K-Means Clustering
An Easy Introduction to K-Means Clustering
Visual Walkthrough of the K-Means Clustering Algorithm
Soft K-Means
The K-Means Objective Function
Soft K-Means in Python Code
Visualizing Each Step of K-Means
  • Know how to code in Python and Numpy
  • Install Numpy and Scipy
  • Matrix arithmetic, probability
Что Вы изучите?
  • Understand the regular K-Means algorithm
  • Understand and enumerate the disadvantages of K-Means Clustering
  • Understand the soft or fuzzy K-Means Clustering algorithm
  • Implement Soft K-Means Clustering in Code
  • Understand Hierarchical Clustering
  • Explain algorithmically how Hierarchical Agglomerative Clustering works
  • Apply Scipy's Hierarchical Clustering library to data
  • Understand how to read a dendrogram
  • Understand the different distance metrics used in clustering
  • Understand the difference between single linkage, complete linkage, Ward linkage, and UPGMA
  • Understand the Gaussian mixture model and how to use it for density estimation
  • Write a GMM in Python code
  • Explain when GMM is equivalent to K-Means Clustering
  • Explain the expectation-maximization algorithm
  • Understand how GMM overcomes some disadvantages of K-Means
  • Understand the Singular Covariance problem and how to fix it
Lazy Programmer Inc.
Lazy Programmer Inc.
Artificial intelligence and machine learning engineer

Today, I spend most of my time as an artificial intelligence and machine learning engineer with a focus on deep learning, although I have also been known as a data scientist, big data engineer, and full stack software engineer.

I received my masters degree in computer engineering with a specialization in machine learning and pattern recognition.

Experience includes online advertising and digital media as both a data scientist (optimizing click and conversion rates) and big data engineer (building data processing pipelines). Some big data technologies I frequently use are Hadoop, Pig, Hive, MapReduce, and Spark.

I've created deep learning models to predict click-through rate and user behavior, as well as for image and signal processing and modeling text.

My work in recommendation systems has applied Reinforcement Learning and Collaborative Filtering, and we validated the results using A/B testing.

I have taught undergraduate and graduate students in data science, statistics, machine learning, algorithms, calculus, computer graphics, and physics for students attending universities such as Columbia University, NYU, Hunter College, and The New School. 

Multiple businesses have benefitted from my web programming expertise. I do all the backend (server), frontend (HTML/JS/CSS), and operations/deployment work. Some of the technologies I've used are: Python, Ruby/Rails, PHP, Bootstrap, jQuery (Javascript), Backbone, and Angular. For storage/databases I've used MySQL, Postgres, Redis, MongoDB, and more.

Курсы Udemy подойдут для профессионального развития. Платформа устроена таким образом, что эксперты сами запускают курсы. Все материалы передаются в пожизненный доступ. На этой платформе можно найти курс, без преувеличений, на любую тему – начиная от тьюториала по какой-то камере и заканчивая теоретическим курсом по управлению финансовыми рисками. Язык и формат обучения устанавливается преподавателем, поэтому стоит внимательно изучить информацию о курсе перед покупкой.
77.99 $ 119.99 $
2 313
1 179