Artificial Intelligence: Reinforcement Learning in Python

4.6 (7719)
Обучение платное
12.5 часов курса
Курс от Udemy
Чему вы научились?
Apply gradient-based supervised machine learning methods to reinforcement learning
Understand reinforcement learning on a technical level
Understand the relationship between reinforcement learning and psychology
Implement 17 different reinforcement learning algorithms
О курсе

When people talk about artificial intelligence, they usually don’t mean supervised and unsupervised machine learning.

These tasks are pretty trivial compared to what we think of AIs doing - playing chess and Go, driving cars, and beating video games at a superhuman level.

Reinforcement learning has recently become popular for doing all of that and more.

Much like deep learning, a lot of the theory was discovered in the 70s and 80s but it hasn’t been until recently that we’ve been able to observe first hand the amazing results that are possible.

In 2016 we saw Google’s AlphaGo beat the world Champion in Go.

We saw AIs playing video games like Doom and Super Mario.

Self-driving cars have started driving on real roads with other drivers and even carrying passengers (Uber), all without human assistance.

If that sounds amazing, brace yourself for the future because the law of accelerating returns dictates that this progress is only going to continue to increase exponentially.

Learning about supervised and unsupervised machine learning is no small feat. To date I have over SIXTEEN (16!) courses just on those topics alone.

And yet reinforcement learning opens up a whole new world. As you’ll learn in this course, the reinforcement learning paradigm is more different from supervised and unsupervised learning than they are from each other.

It’s led to new and amazing insights both in behavioral psychology and neuroscience. As you’ll learn in this course, there are many analogous processes when it comes to teaching an agent and teaching an animal or even a human. It’s the closest thing we have so far to a true general artificial intelligence.
What’s covered in this course?

  • The multi-armed bandit problem and the explore-exploit dilemma
  • Ways to calculate means and moving averages and their relationship to stochastic gradient descent
  • Markov Decision Processes (MDPs)
  • Dynamic Programming
  • Monte Carlo
  • Temporal Difference (TD) Learning (Q-Learning and SARSA)
  • Approximation Methods (i.e. how to plug in a deep neural network or other differentiable model into your RL algorithm)
  • Project: Apply Q-Learning to build a stock trading bot

If you’re ready to take on a brand new challenge, and learn about AI techniques that you’ve never seen before in traditional supervised machine learning, unsupervised machine learning, or even deep learning, then this course is for you.

See you in class!

Suggested Prerequisites:

  • Calculus
  • Probability
  • Object-oriented programming
  • Python coding: if/else, loops, lists, dicts, sets
  • Numpy coding: matrix and vector operations
  • Linear regression
  • Gradient descent

TIPS (for getting through the course):

  • Watch it at 2x.
  • Take handwritten notes. This will drastically increase your ability to retain the information.
  • Write down the equations. If you don't, I guarantee it will just look like gibberish.
  • Ask lots of questions on the discussion board. The more the better!
  • Realize that most exercises will take you days or weeks to complete.
  • Write code yourself, don't just sit there and look at my code.


  • Check out the lecture "What order should I take your courses in?" (available in the Appendix of any of my courses, including the free Numpy course)

Where to get the Code
Strategy for Passing the Course
High Level Overview of Reinforcement Learning and Course Outline
What is Reinforcement Learning?
On Unusual or Unexpected Strategies of RL
Course Outline
Defining Some Terms
Return of the Multi-Armed Bandit
Problem Setup and The Explore-Exploit Dilemma
Applications of the Explore-Exploit Dilemma
  • Calculus (derivatives)
  • Probability / Markov Models
  • Numpy, Matplotlib
  • Beneficial ave experience with at least a few supervised machine learning methods
  • Gradient descent
  • Good object-oriented programming skills
Lazy Programmer Team
Lazy Programmer Team
Artificial Intelligence and Machine Learning Engineer
Lazy Programmer Inc.
Lazy Programmer Inc.
Artificial intelligence and machine learning engineer
Курсы Udemy подойдут для профессионального развития. Платформа устроена таким образом, что эксперты сами запускают курсы. Все материалы передаются в пожизненный доступ. На этой платформе можно найти курс, без преувеличений, на любую тему – начиная от тьюториала по какой-то камере и заканчивая теоретическим курсом по управлению финансовыми рисками. Язык и формат обучения устанавливается преподавателем, поэтому стоит внимательно изучить информацию о курсе перед покупкой.
Комментарии (7719)
Как и любой другой веб-сайт, konevy использует файлы cookie. Эти файлы используются для хранения информации, включая предпочтения посетителей и страницы веб-сайта, которые он/она посещал. Информация используется для того, чтобы подстроить содержимое нашей страницы под тип браузера пользователя и другие параметры и таким образом улучшить его пользовательский опыт. Для получения более подробной информации о файлах cookie, пожалуйста, прочтите статью «Что такое файлы cookie»