Deep Learning: Convolutional Neural Networks in Python

4.6 (3119)
MOOC
Payment
Learning paid
Language
English
Duration
11.5 hours course
Course by Udemy
What will you learn?
Understand convolution and why it's useful for Deep Learning
Understand and explain the architecture of a convolutional neural network (CNN)
Implement a CNN in TensorFlow 2
Apply CNNs to challenging Image Recognition tasks
Apply CNNs to Natural Language Processing (NLP) for Text Classification (e.g. Spam Detection, Sentiment Analysis)
About the course

 NOW IN TENSORFLOW 2 and PYTHON 3

Learn about one of the most powerful Deep Learning architectures yet!

The Convolutional Neural Network (CNN) has been used to obtain state-of-the-art results in computer vision tasks such as object detection, image segmentation, and generating photo-realistic images of people and things that don't exist in the real world!

This course will teach you the fundamentals of convolution and why it's useful for deep learning and even NLP (natural language processing).

You will learn about modern techniques such as data augmentation and batch normalization, and build modern architectures such as VGG yourself.

This course will teach you:

  • The basics of machine learning and neurons (just a review to get you warmed up!)
  • Neural networks for classification and regression (just a review to get you warmed up!)
  • How to model image data in code
  • How to model text data for NLP (including preprocessing steps for text)
  • How to build an CNN using Tensorflow 2
  • How to use batch normalization and dropout regularization in Tensorflow 2
  • How to do image classification in Tensorflow 2
  • How to do data preprocessing for your own custom image dataset
  • How to use Embeddings in Tensorflow 2 for NLP
  • How to build a Text Classification CNN for NLP (examples: spam detection, sentiment analysis, parts-of-speech tagging, named entity recognition)

All of the materials required for this course can be downloaded and installed for FREE. We will do most of our work in Numpy, Matplotlib, and Tensorflow. I am always available to answer your questions and help you along your data science journey.

This course focuses on "how to build and understand", not just "how to use". Anyone can learn to use an API in 15 minutes after reading some documentation. It's not about "remembering facts", it's about "seeing for yourself" via experimentation. It will teach you how to visualize what's happening in the model internally. If you want more than just a superficial look at machine learning models, this course is for you.

Suggested Prerequisites:

  • matrix addition and multiplication
  • basic probability (conditional and joint distributions)
  • Python coding: if/else, loops, lists, dicts, sets
  • Numpy coding: matrix and vector operations, loading a CSV file

WHAT ORDER SHOULD I TAKE YOUR COURSES IN?:

  • Check out the lecture "What order should I take your courses in?" (available in the Appendix of any of my courses, including the free Numpy course)
Program
Outline and Review
Recap essential parts of deep learning covered previously, and learn about what will be covered in this course.
Introduction and Outline
Review of Important Concepts
Where to get the code and data for this course
How to Succeed in this Course
Tensorflow or Theano - Your Choice!
How to load the SVHN data and benchmark a vanilla deep network
Convolution
Learn about convolution and its application to audio, images, and physical systems.
Real-Life Examples of Convolution
Beginner's Guide to Convolution
What is convolution?
Convolution example with audio: Echo
Requirements
  • Basic math (taking derivatives, matrix arithmetic, probability) is helpful
  • Python, Numpy, Matplotlib
Lecturers
Lazy Programmer Inc.
Lazy Programmer Inc.
Artificial intelligence and machine learning engineer
Platform
/storage/img/providers/udemy.svg
Udemy courses are suited to professional development. The platform is organized in such a way that it is experts themselves that decide the topic and when the course will start. All supporting documents are made available to you for lifetime access. On this platform, you can find a course on about any subject, and that is no exaggeration – from a tutorial on how to ride a motorcycle, to managing the financial markets. The language and the course format are established by the teacher. This is why it is important to read the information about the course carefully before parting with any money.
Rating
4.6
(1984)
(892)
(157)
(47)
(52)
Comments (3119)
Like any other website, konevy uses «cookies». These cookies are used to store information including visitor's preferences, and the pages on the website that the visitor accessed or visited. The information is used to optimize the users' experience by customizing our web page content based on visitors' browser type and/or other information. For more general information on cookies, please read the «What Are Cookies» article on Cookie Consent website.